243 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationInverse Electrocardiography (ECG) aims to noninvasively estimate the electrophysiological activity of the heart from the voltages measured at the body surface, with promising clinical applications in diagnosis and therapy. The main challenge of this emerging technique lies in its mathematical foundation: an inverse source problem governed by partial differential equations (PDEs) which is severely ill-conditioned. Essential to the success of inverse ECG are computational methods that reliably achieve accurate inverse solutions while harnessing the ever-growing complexity and realism of the bioelectric simulation. This dissertation focuses on the formulation, optimization, and solution of the inverse ECG problem based on finite element methods, consisting of two research thrusts. The first thrust explores the optimal finite element discretization specifically oriented towards the inverse ECG problem. In contrast, most existing discretization strategies are designed for forward problems and may become inappropriate for the corresponding inverse problems. Based on a Fourier analysis of how discretization relates to ill-conditioning, this work proposes refinement strategies that optimize approximation accuracy o f the inverse ECG problem while mitigating its ill-conditioning. To fulfill these strategies, two refinement techniques are developed: one uses hybrid-shaped finite elements whereas the other adapts high-order finite elements. The second research thrust involves a new methodology for inverse ECG solutions called PDE-constrained optimization, an optimization framework that flexibly allows convex objectives and various physically-based constraints. This work features three contributions: (1) fulfilling optimization in the continuous space, (2) formulating rigorous finite element solutions, and (3) fulfilling subsequent numerical optimization by a primal-dual interiorpoint method tailored to the given optimization problem's specific algebraic structure. The efficacy o f this new method is shown by its application to localization o f cardiac ischemic disease, in which the method, under realistic settings, achieves promising solutions to a previously intractable inverse ECG problem involving the bidomain heart model. In summary, this dissertation advances the computational research of inverse ECG, making it evolve toward an image-based, patient-specific modality for biomedical research

    Optimizing Inverse Electrocardiographic Problem: Hybrid and High-Order Finite Element Method

    Get PDF
    posterOne type of inverse problems in electrocardiography (ECG) is to non-invasively reconstruct epicardial electric potentials from body-surface measurements. We study how to design the finite element discretization of such problem, so as to optimize the conditioning and stability of the resulting numerical system. The inverse ECG problem is ill-posed, requiring different discretization strategies from its corresponding forward problem (see Fig.1 ). We developed two new techniques: 1) a unified finite element framework that accepts tetrahedral, hexahedral and prismatic elements, and 2) a high-order finite element method with a flexible hierarchical structure. We plan to integrate these techniques into the ECG toolkit within SCIRun. The toolkit will facilitate realistic simulation of clinical applications such as ischemia and arrhythmia

    Theoretical study on the nonlinear behavior of a fluid micro-vibration isolator

    Get PDF
    Vibration isolation is an important method of spacecraft vibration control, and the study of vibration isolation performance (VIP) is the theoretical basis to design the interior structure of isolator and analyze its transmissibility characteristics. In the present study, a new type of fluid micro-vibration isolator used for space engineering is investigated, thus its nonlinear multi-parameter model whose pth power damping and qth power stiffness are placed in series is firstly constructed. After the application of harmonic balance method (HBM), the force and absolute displacement transmissibility curves under different parameters are obtained, and the corresponding transmissibility characteristics are estimated based on self-defined evaluation indices of VIP. Besides, the effects of some key factors, e.g., excitation amplitude and stiffness ratio, on the VIP are also analyzed. The results show that if the isolator is excited by external force in orbit, the linear model can be approximately used to analyze the VIP. However, if the isolator is excited by foundation displacement during the launch stage, only the nonlinear model can accurately describe its vibration behavior. Moreover, the numerical algorithm Runge-Kutta method is adopted to validate the above results, and a stability analysis is also carried out to show their practicability. Finally, an actual application of the nonlinear model is accomplished with the use of an optimization method called generalized pattern search (GPS) algorithm. The presented theory and method can also provide a reference and a theoretical basis for the design and engineering application of this type of fluid micro-vibration isolators

    Experimental research and numerical simulation on vibration characteristics of a rectangular plate structure in fast time-varying thermal environments

    Get PDF
    Plate attitude control structures such as rudders and vertical tails of high-speed aircraft are faced with the compound effect of fast time-varying thermal environments and vibration during the high maneuvering flight. In this paper, a thermal/vibration test system was established by combining a transient aerodynamic heating simulation system with a vibration test system. A rectangular plate structure made of nickel-based stainless steel was tested at different heating rates and its modal frequencies in fast time-varying thermal environments were obtained. Numerical calculation was performed accordingly. The calculated results coincide well with the experimental results, verifying the credibility and effectiveness of the experimental methods. The research results can provide an important test method and reference basis for the dynamic performance analysis and safety design for the plate-like structures of high-speed aircraft in fast time-varying thermal environments

    Effects of chemical chaperones and detergents on thermostability of pepper leaf proteins

    Get PDF
    The goal of my research project is to explore structure-function relationships between cosolvents and protein thermostability. Effects of cosolvents, including chemical chaperones and detergents, are monitored as changes in protein solubility and activity following high temperature exposure. Additive effects of chaperones such as glucose and glycine have been observed. Additive effect of glycine and CHAPS on both pepper leaf proteins and commercial ovalbumin were tested. The relationship between the observed stabilizing effect and the polarity of the chemical was discussed. Ionic detergents yield a dual response mode on thermostability of pepper leaf proteins as concentrations increase. The relationship between response transition and micelle formation was discussed.Horticulture and Landscape Architecture Departmen

    Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing

    Get PDF
    AbstractRoad networks affect the spatial structure of urban landscapes, and with continuous expansion, it will also exert more widespread influences on the regional ecological environment. With the support of geographic information system (GIS) technology, based on the application of various spatial analysis methods, this study analyzed the spatiotemporal changes of road networks and landscape ecological risk in the research area of Beijing to explore the impacts of road network expansion on ecological risk in the urban landscape. The results showed the following: 1) In the dynamic processes of change in the overall landscape pattern, the changing differences in landscape indices of various landscape types were obvious and were primarily related to land-use type. 2) For the changes in a time series, the expansion of the road kernel area was consistent with the extension of the sub-low-risk area in the urban center, but some differences were observed during different stages of development. 3) For the spatial position, the expanding changes in the road kernel area were consistent with the grade changes of the urban central ecological risk, primarily because both had a certain spatial correlation with the expressways. 4) The influence of road network expansion on the ecological risk in the study area had obvious spatial differences, which may be closely associated with the distribution of ecosystem types

    Experimental investigation of high temperature thermal-vibration characteristics for composite wing structure of hypersonic flight vehicles

    Get PDF
    A thermal-vibration test system is established by combining the high-temperature transient heating simulation system and vibration test apparatus, and this system can carry out experimental research on the thermal modal of high-temperature-resistant composite wing structure of hypersonic flight vehicles under high temperature environment with 1100°C. The vibration signals of the composite wing structure in high-temperature environments are transmitted to non-high temperature field by using self-developed extension configurations and then the vibration signals are measured and identified by using ordinary acceleration sensors. Based on a time-frequency joint analysis technique, the experimental data is analyzed and processed to obtain the key vibration characteristic parameters of composite wing structure, such as the natural frequency and mode shapes, in a thermal-vibration coupled environment up to 1100°C. The experimental results provide an important basis for the dynamic performance analysis and safety design of composite wing structure under high-temperature thermal-vibration conditions

    Cooperative Routing in Multi-Radio Multi-Hop Wireless Network

    Get PDF
    There are many recent interests on cooperative communication (CC) in wireless networks. Despite the large capacity gain of CC in small wireless networks, CC can result in severe interference in large networks and even degraded throughput. The aim of this chapter is to concurrently exploit multi-radio and multi-channel (MRMC) and CC technique to combat co-channel interference and improve the performance of multi-hop wireless network. Our proposed solution concurrently considers cooperative routing, channel assignment, and relay selection and takes advantage of both MRMC technique and spatial diversity to improve the throughput. We propose two important metrics, contention-aware channel utilization routing metric (CACU) to capture the interference cost from both direct and cooperative transmission, and traffic aware channel condition metric (TACC) to evaluate the channel load condition. Based on these metrics, we propose three algorithms for interference-aware cooperative routing, local channel adjustment, and local path and relay adaptation, respectively, to ensure high-performance communications in dynamic wireless networks. Our algorithms are fully distributed and can effectively mitigate co-channel interference and achieve cooperative diversity gain. To our best knowledge, this is the first distributed solution that supports CC in MRMC networks. Our performance studies demonstrate that our algorithms can significantly increase the aggregate throughput
    • …
    corecore